Executive Functions and Number Sense as Predictors of Math Learning Disabilities

Sylke W.M. Toll
Sanne H.G. van der Ven
Evelyn H. Kroesbergen
Johannes E.H. van Luit

September 8, 2010
Executive Functions (EF)

• Definition

• Novel situations

• Structure:
 (1) shifting
 (2) inhibition
 (3) working memory
EF: Shifting

Animal Shifting
Yellow: name the fruit
Purple: name the animal
EF and Math

Executive Functions

Shifting
- Switch between sets, tasks, or strategies.
EF: inhibition

Simon Task

If you see a mouse: tap with your left hand

If you see a dragon: tap with your right hand
EF and Math

Executive Functions

Shifting
- Switch between sets, tasks, or strategies.

Inhibition
- suppress dominant responses in favor of more goal-appropriate ones.

In math
Alternation between steps, sub-solutions and strategies
Inhibit old, predominant strategies and task-irrelevant information
EF: Working Memory

Digit Span Backwards

9 2 6 1 4
EF and Math

Executive Functions

Shifting
- Switch between sets, tasks, or strategies.

Inhibition
- suppress dominant responses in favor of more goal-appropriate ones.

Working Memory
- store information and revise this in the light of new information.
Previous studies

• Relationship EF and Math:

 Shifting (e.g., Bull, Espy, & Wiebe, 2008)

 Inhibition (e.g., St. Clair-Thompson & Gathercole, 2006)

 Working Memory (e.g., the review of Raghubar, Barnes & Hecht, 2010)

• EF and Math are developing; longitudinal studies are scarce.

• Number sense is strong predictor of math difficulties.
 (e.g., Jordan, Glutting, & Ramineni, 2010)
Number Sense: an example

“Take a look at these pictures. Point all the pictures that are not the same as five.”
"Here you see a vase with eight flowers. Point all the vases which also contain eight flowers."
Aims

1. EF can **identify** children with later persistent mathematical difficulties.

2. The predictive value of EF **adds** to the predictive value of number sense.
Method (I)

N = 209 (108 boys and 101 girls)
Method (II)

Classification:
- **Persistent Very Low (PVL)**
- **Persistent Below Average (PBA)**
- **Typically Achieving group (TA)**

Criteria:
- $4x < 25\%$
- $4x < 50\%$
- Remaining

difficulties
- **PVL:** 10\%
- **PBA:** 22\%
- **TA:** 68\%

at risk

special attention
Statistics

1. Repeated measures ANOVAs
2. Discriminant analyses
Repeated measures ANOVAs: shifting

Animal Shifting

- PVL
- PBA
- TA

Mean difference score (sec)

B1, M1, B2
Repeated measures ANOVAs: inhibition

![Graph showing mean difference score (sec) for Simon Task across B1, M1, and B2 for PVL, PBA, and TA conditions.]

- PVL
- PBA
- TA

Mean difference score (sec)

B1 | M1 | B2

PVL

PBA

TA
Repeated measures ANOVAs: working memory

Digit Span Backwards

- PVL
- PBA
- TA

Mean total

B1 M1 B2
Repeated measures ANOVAs: conclusion

- Significant development in one shifting task and all WM tasks.
- Shifting and Inhibition: no group differences
- Working Memory: group differences between three groups on all tasks.

The three groups only differ in their performance on working memory tasks.
Discriminant Analyses: WM

<table>
<thead>
<tr>
<th></th>
<th>WM</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVL</td>
<td>57.1</td>
</tr>
<tr>
<td>PVL as PBA</td>
<td>28.6</td>
</tr>
<tr>
<td>PBA</td>
<td>28.9</td>
</tr>
<tr>
<td>TA</td>
<td>50.3</td>
</tr>
</tbody>
</table>
Discriminant Analyses: NS

<table>
<thead>
<tr>
<th></th>
<th>WM</th>
<th>NS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVL</td>
<td>57.1</td>
<td>57.1</td>
</tr>
<tr>
<td>PVL as PBA</td>
<td>28.6</td>
<td>33.3</td>
</tr>
<tr>
<td>PBA</td>
<td>28.9</td>
<td>26.7</td>
</tr>
<tr>
<td>TA</td>
<td>50.3</td>
<td>67.1</td>
</tr>
</tbody>
</table>
Discriminant Analyses: WM and NS

<table>
<thead>
<tr>
<th></th>
<th>WM</th>
<th>NS</th>
<th>Together</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVL</td>
<td>57.1</td>
<td>57.1</td>
<td>66.7</td>
</tr>
<tr>
<td>PVL as PBA</td>
<td>28.6</td>
<td>33.3</td>
<td>28.6</td>
</tr>
<tr>
<td>PBA</td>
<td>28.9</td>
<td>26.7</td>
<td>40.0</td>
</tr>
<tr>
<td>TA</td>
<td>50.3</td>
<td>67.1</td>
<td>59.4</td>
</tr>
</tbody>
</table>
Discriminant Analyses: WM and NS

<table>
<thead>
<tr>
<th></th>
<th>WM</th>
<th>NS</th>
<th>Together</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVL</td>
<td>85.7</td>
<td>90.4</td>
<td>95.3</td>
</tr>
<tr>
<td>PVL as PBA</td>
<td>28.9</td>
<td>26.7</td>
<td>40.0</td>
</tr>
<tr>
<td>PBA</td>
<td>50.3</td>
<td>67.1</td>
<td>59.4</td>
</tr>
<tr>
<td>TA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Discriminant Analyses: conclusion

PVL as PVL
- WM and NS comparable
- WM and NS together the best

PVL as PVL or as PBA
- NS best predictor
- WM adds value to this prediction
Discussion

- Using NS and WM ability in screening children at risk for math learning difficulties
- Stimulating both NS and WM ability → further research
Questions?

Contact: S.W.M.Toll@uu.nl